Big Data на практике: как бизнесу извлечь пользу из комбинирования data-архитектур

18.08.2021
Многолетняя эволюция хранилищ данных в определённый момент привела к лавинообразному развитию технологий Big Data. О пяти основных подходах к построению платформ данных мы уже рассказывали ранее, в этой же статье речь пойдёт об их практической ценности для бизнеса. Комбинируя data-архитектуры в IT-инфраструктуре предприятия, можно добиться многого: сократить затраты на производство, оптимизировать цены на конечную продукцию, повысить лояльность клиентов и укрепить конкурентные позиции компании. Как достичь этих целей, рассказываем на примерах, реализованных в различных сегментах бизнеса.
Big Data на практике, как бизнесу извлечь пользу из комбинирования data-архитектур

Производство и доставка товаров: как сэкономить на логистике

Любая логистическая или производственная компания с собственным транспортным подразделением заинтересована в снижении расходов на доставку товаров до точек их реализации. Доля логистической составляющей в структуре стоимости продукта может быть довольно весомой, а при наличии приватного автопарка в неё необходимо закладывать и расходы на его содержание.

Обычно экономия сводится к минимизации времени простоя грузовых автомобилей из-за поломок, ремонтов и техобслуживания за счёт оперативной поставки запчастей. Такой подход особенно важен при динамическом ценообразовании, потому что он позволяет сегментировать географию присутствия бизнеса по уровню затрат на доставку товаров в конкретные регионы и сформировать для каждого из них оптимальные цены.

Сбор и использование массива информации о ремонтах грузовых автомобилей, их причинах, продолжительности, потребности в запасных частях и агрегатах не требуют применения технологий Big Data, это обычное КХД (корпоративное хранилище данных). Если же КХД совместить с IoT-решениями (Internet of Things, интернет вещей), то есть установить на ключевых узлах и агрегатах автомобилей различные датчики, способные фиксировать появление вибраций или нетипичных звуков — свиста или скрежета, то анализ совокупности данных поможет выделить отдельные факторы или группы факторов, приводящих к выходу техники из строя, и вычислить их стоимость. По сути, это уже полноценное PdM (Predictive Maintenance, предиктивное обслуживание) грузовых автомобилей, позволяющее прогнозировать и предотвращать поломки в пути и даже аварии, которые они могут провоцировать.

Своевременная остановка ненадёжного узла и его досрочное обследование или отправка в ремонт не только исключат порчу связанных с этим узлом исправных агрегатов, но и заметно сократят время простоя, и в итоге удастся сэкономить и на доставке товаров в точку реализации. Если PdM совместить с геоаналитикой из открытых источников, то есть сведениями о погодных условиях на маршруте в динамике, ремонтах и перекрытиях дорог, и привязать данные о транспортных средствах, перевозящих товары в конкретные точки, то можно получить интересную аналитику, учитывающую влияние совокупности всех этих факторов на цену товара в конкретном магазине или стоимость его доставки до определённого склада.

Прибавим к этому стандартную маркетинговую оптимизацию и динамическое ценообразование, основанное на прогнозировании спроса, и получим оперативный учёт стоимости ремонтов в цене конечной продукции, которую уже не придётся пересчитывать дополнительно. В итоге получится готовая модель, следуя которой можно быстро принимать решения об изменении стоимости продукта в точке реализации или проведении какой-либо маркетинговой акции.

По данным компании КРОК, внедрение подобных технологий может на 65% уменьшить время простоев грузовых автомобилей из-за поломок и на 30% сократить расходы на их ремонт. Попутно на 35% снижается объём запчастей, хранящихся на складе, а экономия топлива достигает 8%.

Банки: как сформировать предложение для новых клиентов

Можно ли своевременно и оперативно в онлайн-режиме продавать потенциальным клиентам банков именно те продукты, которые им интересны, и таким образом расширять клиентскую аудиторию? Да, это возможно, причём за тот короткий период, пока ещё не зарегистрированный посетитель сайта компании переходит с одной страницы на другую. Переходы могут занимать считанные секунды, но решение, как и в первом описанном кейсе, вполне достижимо за счёт комбинирования различных data-архитектур внутри IT-инфраструктуры банка.

Для начала необходимо использовать накопленную ранее Clickstream-аналитику поведения зарегистрированных на сайте компании пользователей. Она создаётся на основе данных, детально описывающих последовательность действий посетителей ресурса и поступающих для обработки в режиме реального времени. Данные фиксируют движения компьютерной мыши, задержки на заинтересовавших клиента разделах, возвраты к определённым страницам, интерес к определённым продуктам, а полученные результаты связываются со статистикой покупок.

К Clickstream-аналитике добавляются:
  • рисковое КХД (данные о возможных рисках банка при оформлении кредитов и пр.) и PoD (Probability of default, риски дефолтов), которые позволяют исключить ненадёжных покупателей из выборки потенциальных клиентов;
  • маркетинговое КХД (маркетинговые данные компании) с ABT (Analytical Base Table, аналитическая базовая таблица), увязывающие продукты с предпочтениями целевой аудитории;
  • клиентские профили (портреты типичных представителей ЦА).
Совокупность этой информации позволяет разделить покупателей на определённые категории в соответствии с их поведенческими шаблонами и привязать к каждой из них пользующиеся спросом именно у этой группы клиентов продукты.

Используя все эти инструменты (Рис.1), можно получать новых клиентов из числа ещё не зарегистрированных на сайте банка пользователей. Нового посетителя портала, о котором пока ничего не известно, Clickstream в режиме реального времени отнесёт к конкретной категории. Ему незамедлительно будет предложен соответствующий рекламный баннер с приоритетным для этой группы продуктом. В итоге покупатель получит то, что ему необходимо, а банк пополнит собственную клиентскую базу. Отличный пример конверсии продаж, применяемый на практике уже сегодня.

Рис. 1


Производство сложного оборудования: как повысить лояльность клиентов

Производители высокотехнологичного оборудования с длительным циклом изготовления и доставки конечного продукта до потребителя, например серверов, заинтересованы в повышении уровня лояльности клиентов не меньше рыночных игроков в банковском секторе. Даже с учётом сложности организации поставок такого оборудования выиграть во времени можно за счёт своевременного и оперативного предоставления клиенту тех запасных узлов, которые ещё исправны, но уже в ближайшее время могут выйти из строя. Такие ситуации вполне поддаются прогнозированию с помощью Big Data.

В практике уже достаточно случаев, когда клиент только заполняет запрос на замену одного из жёстких дисков, а поставщик уже присылает ему новый для замены. При достаточно большом объёме используемых серверов (более 50 единиц с 12 или 24 жёсткими дисками в каждом) их выход из строя уже не носит вероятностный характер, и его можно прогнозировать, используя усреднённый график отказов.

Для этого необходимо выстроить хронологию поступления заказов запасных частей от ключевых клиентов, собрать данные о том, как осуществлялась техническая поддержка, учесть спецификацию оборудования и все его компоненты. Затем нужно сформировать прогноз выхода запчастей из строя в динамике и, соответственно, потребности в их замене. При условии заключения с клиентом сервисного контракта на обслуживание техники в дальнейшем можно превентивно поставлять ему те запчасти, выход из строя которых наиболее вероятен. Такой подход (Рис.2) не только повысит уровень лояльности покупателей, но и гарантирует длительность сотрудничества.
Рис. 2


Приведённые примеры представляют собой агрегированную информацию, учитывающую мировую практику внедрения Big Data. Конкретные кейсы внедрения продуктов для работы с большими данными на российском рынке можно посмотреть в портфолио публичных кейсов Arenadata.

Спасибо, что написали нам!

Мы обработаем заявку и свяжемся с вами в ближайшее время.

Будем рады помочь!

Отправьте ваш вопрос через форму ниже, и наши специалисты свяжутся с вами в ближайшее время.

Фамилия *
Имя *
Эл. почта *
Телефон *
Наименование компании *
Опишите ваш вопрос
ошибка! проверьте правильно ли вы заполнили поля

Этот сайт использует cookie-файлы и другие технологии, чтобы помочь вам в навигации, а также предоставить лучший пользовательский опыт, анализировать использование наших продуктов и услуг, повысить качество рекламных и маркетинговых активностей.